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We present results of molecular dynamics computer simulation experiments of phase separation in a two-
dimensional model binary fluid. For critical quenches the tubularlike domain structure grows at late times
according to a power law with an exponent 1/2 which later crosses over to 2/3. This latter result has recently
been questioned by Ossadniket al. @Phys. Rev. Lett.72, 2498~1994!#, and we present further evidence that the
fast exponent is indeed present in the dynamical growth. That these exponents are hydrodynamic in origin is
demonstrated by performing runs where the velocity field is disturbed at regularly spaced intervals of time. The
perturbation consists of resetting the velocities of the particles to those characteristic of a Boltzmann distribu-
tion, which destroys the hydrodynamic tail of the velocity autocorrelation function. The resulting exponent
changes to that predicted by experiments using stochastic techniques~Monte Carlo!, i.e., 1/3. Also, we present
results of experiments for off-critical quenches. The late-stage growth exponent for not too off-critical con-
centrations is close to 1/3, but we observe a continuous transition from this exponent to that characteristic of
a critical quench.@S1063-651X~96!02906-6#

PACS number~s!: 64.60.Qb, 05.70.Ln, 61.20.Ja, 64.75.1g

I. INTRODUCTION

Recently there has been much interest in the kinetic pro-
cesses which occur when a binary fluid is quenched into the
region of liquid-liquid immiscibility @1#. Binary fluids are
especially interesting systems since hydrodynamic effects are
expected to play a significant role in the dynamics of phase
separation@2#. In particular, these effects have been observed
to accelerate the formation of domains of the two separating
phases@3#.

The growth of domains is governed in the scaling regime
by a power-law relation of the formR(t)}tn, where t is
time,R(t) is the average domain size, andn is an exponent
characterizing the growth. Numerical values for the expo-
nents depend on the character and conservation law of the
order parameter and the dimensionality. In previous work
@4,5#, we have applied the technique of molecular dynamics
~MD! to study the late-stage separation of a symmetric bi-
nary fluid mixture in two dimensions~2D!. In this model
molecules of the same species interact through Lennard-
Jones~LJ! potentials, whereas molecules of different species
interact through a purely repulsive potential. We found quite
different exponents for the cases where the concentration
xA of one of the species is critical (xA51/2) and off critical
(xÞ1/2). The exponents obtained, 2/3 for critical and
;1/3 for off-critical quenches, can be rationalized by the
different morphology of the domain structures. However, re-
cent work by Ossadniket al. @6# using similar simulation
techniques questioned our results for the critical quench ex-
periments. These authors performed averages over 12 inde-
pendent realizations of the separation dynamics and con-
cluded, as found previously by us, that the growth exponent
is 1/2 but that our claim from our earlier simulations that
there is a late-stage, fast-growth exponent was an artifact of
the lack of statistical averaging in our study.

In an effort to verify the accuracy of our previous results
and collect more statistically significant information, we un-

dertook further numerical experiments and used different
probes to measure the size of the structure, namely, the struc-
ture factor and the internal energy per molecule. We believe
the latter to be the more accurate and simple probe. Our new
results clearly show that for critical quenches the late-time
exponent is indeed 2/3 and that hydrodynamic flow is re-
sponsible for the fast growth. This is demonstrated by sup-
pressing the hydrodynamic modes in the deterministic MD
simulation, which brings about a slowing down of the
growth. The hydrodynamic modes can be removed from the
system by perturbing the velocity distribution of the en-
semble, which destroys the tail of the velocity autocorrela-
tion function. These results reveal the validity of MD simu-
lation as a valuable tool in kinetics studies of phenomena
influenced by hydrodynamics and cast doubts on the validity
of Monte Carlo, a purely stochastic technique, as a conve-
nient methodology in investigations of phase separation pro-
cesses in real fluids. Our MD simulation study has also been
extended to off-critical quenches, which show a progres-
sively slower dynamical growth as the solute fraction is de-
creased.

The paper is organized as follows. The next section sets
up the interaction model and gives some details of the simu-
lations. In Sec. III we present the results of our computer
experiments and end up in Sec. IV with a discussion and a
summary.

II. INTERACTION MODEL AND SIMULATION
TECHNIQUE

We consider a symmetric binary fluid made up of two
species of molecules,A and B. In order to induce phase
separation it is usual practice to model the interactions with
nonadditive repulsive cores and possibly attractive potentials
with different depths. However, it is computationally conve-
nient, though not necessarily realistic, to induce the phase
separation by simply considering equal-sized molecules for
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all the interactions but a less attractiveAB interaction than
theAA andBB interactions. A rather extreme case is when
the interaction potentials are of the form

fAA~r !5fBB~r !5fLJ
2 ~r !, fAB~r !5fLJ

1 ~r !, ~1!

with

fLJ
6 ~r !54eF S s

r D
12

6S s

r D
6G . ~2!

In our previous work@4# we used this model but with a
power 3 instead of 6 for the tails of the potentials. The above
interactions, which will be henceforth called ‘‘LJ6, ’’ are
used in the present work. In addition, we have considered the
following modification of theAB interaction:

fAB~r !5fWCA~r !, ~3!

with

fWCA~r !5H 4eF S s

r D
12

2S s

r D
6G1e, r,21/6s,

0, r>21/6s.

Here the componentsA andB correspond to pure Lennard-
Jones~LJ! fluids whereas molecules of typesA andB inter-
act through a purely repulsive WCA potential. This model
will be referred to as ‘‘LJ/WCA.’’~In the following the pa-
rameterse ands set the energy and length scales, respec-
tively, and quantities will be given in reduced units accord-
ing to these scales.!

The above interaction models are capable of inducing
phase separation at sufficiently low temperatures and high
densities. The phase diagrams of such mixtures have been
recently calculated by us@5,7# using an improved perturba-
tion theory of mixtures, which provided quite accurate esti-
mates of the coexistence concentrations and distribution
functions. As an example, the temperature-concentration
phase diagram of the LJ-WCA mixture is reproduced in Fig.
1. We also obtained the mean-field spinodals which limit the
region where separation takes place by spinodal decomposi-
tion from the nucleation region. The latter lines give us a
reference with respect to which we can assess the qualitative
difference in the initial and final stages of phase separation
following quenches at different concentrations.

In the phase separation experiments, systems of
N580 000 and 40 000 molecules at temperatureT51 and
with densityr50.8 were considered. The equations of mo-
tion were integrated using the Verlet algorithm and tempera-
ture was controlled by coupling the system to a Nose´-Hoover
thermostat. The time interval wash50.005 in reduced LJ
time units. Our experiments were aimed at studying the ef-
fect on the late-time dynamics of~i! the size of the system,
~ii ! the length of the time interval in which the phase sepa-
ration was observed, and~iii ! the averaging over independent
runs. In a first series of runs, which used the bigger system
and will be referred to as ‘‘experiment 1,’’ molecules inter-
acted via LJ6 potentials and the separation of phases was
monitored for 1600 reduced time units. Six independent
samples were obtained and the domain sizeR(t) was deter-
mined from the first zero of the total correlation function~see

below!. The second experiment, which will be called ‘‘ex-
periment 2,’’ used the smaller system and LJ-WCA poten-
tials. The experiment was extended to 104 time units ~an
increase of one decade with respect to both our previous
experiment and other studies@6,8#! and the dynamical behav-
ior of a single run was characterized by the internal energy
per moleculeu(t); this quantity is much easier to calculate
than the radial distribution function, allowing the simulation
to be extended to much longer times.

The critical quenches are carried out by first equilibrating
a homogeneous liquid of Lennard-Jones molecules and ran-
domly assigning each molecule to be of typeA or B. This
procedure ensures that no large force fields arise locally
since the repulsive parts of the potentials are the same, re-
gardless of the type of molecules in a pair. Some runs were
also started from a triangular configuration. The molecule
fraction was set toxA51/2 which is the critical concentration
of the liquid since the molecular interactions are symmetric
with respect toA-B interchange. The temperature was cho-
sen to beT51 in reduced units; this is well below the tem-
perature where evaporation of the coexisting liquid occurs.

In our previous work@4#, we measured the average size of
the domains from the first zero of the total correlation func-
tion of one of the molecular species, sayA,
hAA(r )5gAA(r )21, wheregAA(r ) is the radial distribution
function of theA component. The calculation of this function
entails heavy computer work. Therefore we used another
probe, the excess internal energy,u(t)2u` . This quantity is
a measure of the interfacial energy, and hence also of the
total length of the interface, which scales asR(t)21. We
have monitored the excess internal energy at every time step
and used the scaling relation

u~ t !2u`}t2n ~4!

to obtain the exponentn. Hereu` is the energy of the coex-
isting phases at equilibrium, where the phases are separated

FIG. 1. TheT-xA phase diagram for a two-dimensional LJ-
WCA mixture. The solid lines are the coexistence and spinodal
lines as obtained from a simple mean-field theory, whereas the
dashed lines correspond to a Guggenheim approximation. Dots in-
dicate the location of the coexistence concentrations as derived
from Gibbs-ensemble simulations. Crosses indicate state points at
which quenches were performed.
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by a flat interface. Our estimate foru` was obtained by
equilibrating a configuration initially consisting of two pure
phases separated by a completely flat interface. This system
was found to equilibrate very slowly but after 43106 time
steps the energy showed no drift. After equilibration aver-
ages were performed over 106 time steps and we obtained
u`521.93160.001@9#.

III. RESULTS AND DISCUSSION

Let us first concentrate on the critical quenches, the re-
sults of which are shown in Figs. 2~a! and 2~b!. In Fig. 2~a!
the domain sizeR(t) corresponds to an average over six
independent runs using 80 000 molecules~experiment 1!.
The typical domain size shows a 1/2-type behavior followed
by a faster growth, with an average slope of 0.6760.16
which is consistent with an exponent of 2/3. The result of the
second experiment~a critical quench using 40 000 mol-
ecules! is given in Fig. 2~b!. The excess energy shows the
same late-time exponent as obtained in the previous experi-
ment fromR(t). Note that in Fig. 2~b! only a single run is
shown, but the simulation was extended an additional decade
with respect to experiment 1 and previous MD studies
@6,4,8#.

The exponent 2/3 can be understood in terms of a simple
dimensional analysis of the equation of motion for the order
parameter, in the so-called inertial hydrodynamic regime.
This exponent was first derived by Furukawa@10# for a sys-
tem in 3D. Here we extend his argument to the 2D case@11#
~the derivation closely follows that made in 3D@2#!. The
starting point is the time-dependent Ginzburg-Landau
~Langevin! equation for the order parameterf(r ,t),

]f

]t
1v•¹f5l¹2m. ~5!

In this equationv is the local velocity field,l is a transport
coefficient, andm is the chemical potential. At late times Eq.
~5! has to be supplemented by the Navier-Stokes equation for
v,

rS ]v

]t
1~v•¹!vD5h¹2v2¹p2f¹m, ~6!

where p is the pressure,h the shear viscosity, andr the
~constant! density. In the viscous regime the left-hand side
terms in Eq.~6! are neglected and dimensional analysis leads
to the well-knownt1/2 law ~possibly with logarithmic correc-
tions!. On the other hand, neglecting the viscous term we are
left with two dominant terms, the inertial term which in the
scaling regime~when a typical domain sizeR is established!
scales asrR/t2, and the driving term due to the spatial gra-
dient of the chemical potential, which scales asg/R2, g
being the surface tension. At later times, when the inertial
term starts being comparable to the driving force, we have
rR/t2;g/R2, leading to R;t2/3. When the condition
R;h2/rg is fulfilled the phase separating system is in the
inertial hydrodynamic regime. We can check whether the
latter condition holds for our fluid by assigning approximate
values for the viscosity and surface tension. From indepen-
dent simulations, we estimateg50.960.1 andh'3.0 for
r50.8 andT51, @12# which givesh2/rg;12.5s. Thus the
scaling arguments@2# suggest a crossover to a growth regime
with an exponent of 2/3 when the domains reach a size sig-
nificantly bigger than about 12 molecular diameters, i.e.,
clusters of about a 100 molecules. At late times, for the
growth withn52/3, our domains do certainly verify the con-
dition R>12.5.

The t2/3 growth, although not observed experimentally,
has been obtained by Farrell and Valls in their Langevin
simulations@13# of a model closely related to modelH of
critical dynamics, which is the relevant continuum model for
fluids. Also, Alexanderet al. @14# and later Osbornet al.
@15# examined a lattice Boltzmann model of hydrodynamic
phase segregation and their results indicate an exponent con-
sistent with ours. Recently, Bastea and Lebowitz@16# have
also obtained phase separation in a binary mixture in the
inertial regime with a power-law exponent of 2/3, using a
lattice-gas model with hydrodynamics. Our finding is to be
contrasted with the results of a recent MD simulation by
Ossadniket al. @6#, who found at1/2 growth law all the way
up to the latest times in their runs. Interestingly, the simula-
tions of Ossadniket al. are identical to ours, except that the
system size was smaller (N517 000) and the algorithm used
to integrate the equations of motion was a Gear algorithm.
We have checked independently that this algorithm, although
not time reversible and symplectic, unlike Verlet’s, is ca-
pable of reproducing our results. At present we are unable to
advance a possible explanation for the different outcomes of
these~seemingly! identical experiments. Also, in another re-
cent MD work, Leptoukhet al. @8# failed to confirm our
predictions for the fast growth; the latter results are to be
taken with circumspection, however, since the simulation
times are clearly too short. In additional work we have in-
vestigated the growth of a mixture with a WCA potential for
the AB interaction, and found that when the temperature is
0.79Tc the dynamics does not reach the fast growth within

FIG. 2. Time dependence of the average domain sizeR(t) of the
growing structure with concentrationxA51/2 from experiment 1
~see text!, as determined from the radial distribution function of one
of the species~a!; excess energyu(t)2u` as a function of time
from experiment 2~see text! ~b!. In both cases straight lines of
slopes 1/2 and 2/3 are shown for comparison.
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our simulation time; a calculation of the surface tension and
viscosity indicates that whereas the latter changes very little
on increasing the temperature fromT51 to 0.59Tc , the sur-
face tension goes down quite significantly and the inertial
hydrodynamic condition is much more severe~larger domain
size!. This means that the simulation time necessary to reach
this regime is much longer and also the system size has to be
increased. This fact seems to have been overlooked in@8#.

Another point of interest in our previous work@4# was the
reported presence of transientt1/4 behavior before the late-
time regime sets up. As correctly stated by the authors of
Ref. @6#, this behavior is a property of independent realiza-
tions, and does not appear in an average over independent
runs. The 1/4 has been associated with transport of particles
along interfaces and was probably favored by our early
model potential which contained a very soft repulsive and
long-rangedAB interaction. In fact, with the present, much
weaker interaction potentials, we have in no case obtained
such transients.

With a view to assessing the role of hydrodynamic inter-
actions in the growth behavior, we have performed some
further experiments at critical concentration, where the ve-
locity flow was disturbed at regularly spaced intervals of
time. This was done by resetting the velocities of all the
molecules according to a~random! Boltzmann distribution,
with a variance given by the~constant! temperature of the
system. The motivation for these experiments was the fol-
lowing. The hydrodynamic modes show up in the velocity
autocorrelation functionC(t) between the velocities at time
t and t1t, @17#

C~t!5
^vi~ t1t!vi~ t !&

^vi~ t !
2&

~7!

where^ & stands for an average over particles in the system.
In real fluids~and also in model fluids simulated by MD! the
hydrodynamic modes cause a long-time correlation of the
velocities which results in a slowly~algebraically! decaying
autocorrelation functionC(t) @18#. On the other hand, sto-
chastic dynamics, like Langevin dynamics and MC, do not
contain these modes and the resulting autocorrelation func-
tions decay rapidly~exponentially! to zero. When the particle
velocities are perturbed no large force gradients are intro-
duced~at least not larger than those already present!; how-
ever, as the velocities are random, we cannot ensure that the
forces have a certain direction. In fact they are randomized
and the ‘‘memory’’ of the correlated motion is lost: we are
actually destroying the autocorrelation in the velocities, Eq.
~7!, for times longer than the time interval between two con-
secutive perturbations, and it follows that the hydrodynamic
modes, which are responsible for the correlated motion, are
decoupled from the order parameter and may disappear.

The results of these experiments are shown in Fig. 3~a!
where again the excess internal energy is represented as a
function of time. In the figure different curves correspond to
different time intervalst between consecutive disturbances.
When the perturbation is applied a short transient follows
where the collective modes are reinstated locally. This is
visible at short times by the small amplitude wiggles in the
curves. At sufficiently late times these modes cannot be re-
instated and they effectively disappear. When the perturba-

tion is applied moderately often (t>0.1 time reduced units
520 MD time steps, top curve in the figure!, the structure
succeeds in growing initially but only slowly and by single-
particle diffusion, which is reflected in the low exponents
attained. For largert the saturation in the growth occurs at
increasingly long times and the system can set a growth law
close tot1/3. This law persists even fort5100 MD steps,
which is a time much longer than the typical time needed for
hydrodynamics to get established locally. For even largert
the growth becomes faster and the full hydrodynamic expo-
nent is recovered@19#. The procedure just outlined allows us
to tune the hydrodynamics by changingt; this parameter
plays a role similar to the hydrodynamic coupling constant
l introduced by Wuet al. @20# in their Langevin study of
phase separation. These authors observe a smooth transition
from a low (n;1/3) to a high (n;0.7) exponent asl is
increased. We believe our results are qualitatively similar to
theirs, but have a microscopic basis.

Another simulation technique to explore thermodynamic
and structural properties of equilibrium many-particle sys-
tems is Monte Carlo~MC!. Despite minor technical differ-
ences of implementation, both techniques, MD and MC, pro-
vide essentially identical equilibrium results since they both
sample the system’s configurational space correctly. There
is, however, no connection between the MC trajectories and
the real trajectories followed by a system. Thus when it
comes to exploring nonequilibrium phenomena, where col-
lective interactions play a role, the use of MC will necessar-
ily lead to different results since this procedure consists of
single-particle moves and hydrodynamic modes are sup-
pressed. This can be shown easily by conducting MC experi-
ments of the same system simulated above. In Fig. 3~b! we
reproduce the results of a run generated by continuum sto-
chastic MC dynamics. As expected@21#, we findR(t);t1/3

~note that here the variablet stands not for real time but for

FIG. 3. Behavior ofu(t)2u` with time for different values of
the parametert; from the top,t520, 100, and̀ , in MD steps~a!.
Comparison between the excess energy from the MD experiment
and that obtained from the MC run~b!. The MC data have been
shifted upwards for the sake of clarity.tMC stands for ‘‘Monte Carlo
time,’’ which is proportional to the number of MC moves.
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‘‘MC time,’’ which is proportional to the number of MC
particle moves!.

Finally, we have performed MD experiments at several
off-critical concentrations, using the LJ-WCA interaction
model and a system ofN540 000 molecules. The setup of
the experiments was identical with that of the critical
quenches except that at the quench typeA was assigned to
10 000, 5 000, and 2 000 molecules, givingxA50.250,
0.125, and 0.050, respectively. The corresponding state
points are marked by crosses in Fig. 1. Note that the first
state point is well inside the ‘‘spinodal region,’’ the second
one is close to the mean-field spinodal line, and the last state
point is in the region between the coexistence line and the
spinodal~the ‘‘nucleation region’’!. Figure 4 shows the re-
sults of the quenches. The run atxA50.500 has also been
included for comparison. The feature which first comes to
one’s attention is the high exponent of thexA50.250
quench. Even though it is likely that the final state has not
been attained, the measured exponent,n;0.45, is still quite
close to 1/2 and much larger than 1/3. This may indicate the
activation of more than one growth mechanism and a smooth
transition, within the length of our simulations, from one
type of growth~motion of interfaces! to the other~cluster
coalescence and evaporation-condensation of single par-
ticles!. The run of thexA50.125 quench shows a 1/3 expo-
nent, consistent with theoretical expectations for off-critical
quenches. Finally, the quench at the nucleation region exhib-
its a very slow growth and the measured exponent is prob-
ably not statistically significant in view of the small fraction
of A ~solute! molecules involved and the short simulation
times. Figure 5 shows snapshots of molecular configurations
taken after 250 000 MD time steps, where the different mor-
phology of the structure with the solute fraction is apparent.

In summary, we have investigated the dynamics of phase
separation in a two-dimensional binary fluid at both critical

and off-critical concentrations using the molecular dynamics
technique. We observe a smooth variation in the late-time
growth exponent with respect to concentrationxA from a
value of 2/3 for a critical quench to a value close to 1/3 for
noncritical quenches. For critical quenches the growth starts
ast1/2, and later crosses over to the faster growtht2/3. These
results are in agreement with theoretical predictions. MD
simulations represent the dynamics of real fluids in an accu-
rate way and explain the formation and evolution of macro-
scopic single-phase domains in phase segregation kinetic
processes exclusively from microscopic molecular interac-
tions. However, they are computationally expensive investi-
gations, and this fact limits the size of the systems and the
times which may be necessary to access the late-stage re-
gimes of spinodal decomposition. In spite of our long runs, it
could be that even longer times are required to attain the
aymptotic region. Nevertheless, we have seen a definite de-
parture of the growth law from the purely diffusive predic-
tion t1/3 to t1/2 at critical concentration, found evidence of
scaling in the correlation functions@4#, and obtained data
strongly in favor of a faster growth at longer times. Finally,
by designing perturbed MD dynamics experiments we have
been able to switch off collective modes in a controlled man-
ner and recover the behavior expected in a system not gov-
erned by hydrodynamic interactions.
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FIG. 4. Time dependence of the excess energy for different
solute concentrationsxA .

FIG. 5. Snapshots of molecular configurations taken after
250 000 MD time steps. Starting from the lower-left picture and
proceeding counterclockwise,xA50.050,0.125,0.250, and 0.500.

54 609PHASE SEPARATION IN TWO-DIMENSIONAL BINARY . . .



@1# J. D. Gunton, M. San Miguel, and P. S. Sanhi, inPhase Tran-
sitions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz ~Academic Press, New York, 1983!, Vol. 8.

@2# A. J. Bray, Adv. Phys.43, 357 ~1994!.
@3# N. Wong and C. Knobler, J. Chem. Phys.69, 725 ~1978!;

Y. C. Choi and W. Goldburg, Phys. Rev. A20, 2105~1979!.
@4# E. Velasco and S. Toxvaerd, Phys. Rev. Lett.71, 388 ~1993!.
@5# E. Velasco and S. Toxvaerd, J. Phys. Condens. Matter6, A205

~1994!.
@6# P. Ossadnik, M. F. Gyure, H. Eugene Stanley, and S. C.

Glotzer, Phys. Rev. Lett.72, 2498~1994!.
@7# S. Toxvaerd and E. Velasco, Mol. Phys.86, 845 ~1995!.
@8# G. Leptoukh, B. Strickland, and C. Roland, Phys. Rev. Lett.

74, 3636~1995!.
@9# S. Toxvaerd, Phys. Rev. E53, 3710~1996!.

@10# H. Furukawa, Phys. Rev. A31, 1103~1985!.
@11# We are indebted to M. Laradji for pointing out this argument

to us.
@12# The assumption is made that the shear viscosity of our two-

dimensional mixture is numerically similar to that of a two-
dimensional Lennard-Jones fluid.

@13# J. E. Farrell and O. T. Valls, Phys. Rev. B40, 7027~1989!; 42,
2353 ~1990!; 43, 630 ~1991!.

@14# F. J. Alexander, S. Chen, and D. W. Grunau, Phys. Rev. B48,
634 ~1993!.

@15# W. R. Osborn, E. Orlandini, M. R. Swift, J. M. Yeomans, and
J. R. Banavar, Phys. Rev. Lett.75, 4031~1995!.

@16# S. Bastea and J. L. Lebowitz, Phys. Rev. E52, 3821 ~1995!;
Phys. Rev. Lett.75, 3776~1995!.

@17# J.-P. Hansen and I. R. McDonald,Theory of Simple Liquids

~Academic Press, London, 1986!.
@18# B. J. Alder and T. E. Wainwright, Phys. Rev. A1, 18 ~1970!.
@19# The speedup of the growth with increasingt is probably only

temporary, and occurs untilR(t) reaches a size of the order of
that typical of the vortices which are destroyed by the random
velocity field.

@20# Y. Wu, F. J. Alexander, T. Lookman, and S. Chen, Phys. Rev.
Lett. 74, 3852~1995!.

@21# Our continuum stochastic Monte Carlo simulation is equiva-
lent to a Monte Carlo simulation of the kinetic Ising model
with conserved order parameter. There has been some contro-
versy in the past over the numerical value of the late-time
exponent of these models. In the case of the latter model, the
expected 1/3 was not confirmed and instead lower values were
found. By using the effective exponentnef f(t) introduced by
Huse@Phys. Rev. B34, 7845~1986!# and long simulation runs,
J. G. Amaret al. @Phys. Rev. B37, 196 ~1988!# managed to
extrapolate to infinite times to obtain the 1/3 exponent, attrib-
uting the previously reported 1/4 to long-persistent transients.
Much the same story can be told for the continuum model
B. Nowadays there is wide consensus that both these models
are in the same universality class and that their late-time ex-
ponent is 1/3. Note that the 1/3 exponent we obtain disagrees
with that reported in@4#; as advanced in the latter reference,
we believe that the difference can be attributed to the model
potential used in@4# for the AB interaction, which might pe-
nalize evaporation-condensation events, thus suppressing the
1/3 exponent and favoring diffusion along interfaces, which
leads to 1/4. The model for theAB interaction used here might
more easily allow for such events.

610 54E. VELASCO AND S. TOXVAERD


